§6.2 Direct Calculation of Anomalies
Let ψ be a column containing all left-handed fermion fields:

$$
\left.\mathcal{\psi}=\left(\begin{array}{c}
u_{\alpha L} \\
d_{\alpha_{L}} \\
v_{e_{L}} \\
e_{L} \\
\vdots \\
\end{array}\right) \quad \begin{array}{c}
\text { where } \\
\text { indices }
\end{array}\right)=1,2,3 \text { denotes color }
$$

Then we can combine these with their anti-particles obtained from charge conjugation:

$$
c \psi c^{-1}=\underbrace{\frac{1}{2}\left(1+\gamma_{5}\right)}_{\substack{\text { left-handed } \\ \text { projection }}} \beta \varphi \psi^{*}
$$

where $\beta \equiv i \gamma^{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\varphi \equiv \gamma_{2} \beta=-i\left(\begin{array}{cc}\sigma_{2} & 0 \\ 0 & \sigma_{2}\end{array}\right)$ Using $\frac{1}{2}\left(1+\gamma_{5}\right) \beta \varphi \psi^{*}=\frac{1}{2}\left[\beta \varphi\left(1-\gamma_{5}\right) \psi\right]^{*}$ we can combine left-handed particles and anti-particles to

$$
x \equiv\left[\begin{array}{l}
\frac{1}{2}\left(1+\gamma_{5}\right) \psi \\
\frac{1}{2}\left[\beta \varphi\left(1-\gamma_{5}\right) \psi\right]^{*}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2}\left(1+\gamma_{5}\right) \psi \\
\frac{1}{2}\left(1+\gamma_{5}\right) \beta \varphi \psi^{*}
\end{array}\right]
$$

\rightarrow all components of χ belong to the $\left(\frac{1}{2}, 0\right)$ representation of Lorentz group Under gauge tres. we have:

$$
\begin{aligned}
\delta \psi & =i \theta_{\alpha}\left[\frac{1}{2}\left(1+\gamma_{5}\right) t_{\alpha}^{2}+\frac{1}{2}\left(1-\gamma_{5}\right) t_{\alpha}^{R}\right] \psi \\
\rightarrow \quad \delta x & =i \varepsilon_{\alpha} T_{\alpha} x,
\end{aligned}
$$

where

$$
T_{\alpha}=\left[\begin{array}{cc}
t_{\alpha}^{2} & 0 \\
0 & -t_{\alpha}^{R^{*}}
\end{array}\right]=\left[\begin{array}{cc}
t_{\alpha}^{2} & 0 \\
0 & -\left(t_{\alpha}^{R}\right)^{\top}
\end{array}\right]
$$

T_{α} will be any Hermitian representation of the gange algebra (not necessarily block-diagonal) Consider the one-loop 3-point function:

$$
\prod_{\alpha \beta \gamma}^{\mu \nu \rho}(x, y, z) \equiv\left\langle T\left\{J_{\alpha}^{\mu}(x), J_{\rho}^{\nu}(y), J_{\gamma}^{\rho}(z)\right\}\right\rangle_{V A C}^{\prime}
$$

where J_{α}^{μ} is the fermionic current, calculated in terms of free fields: $J_{\alpha}^{\mu}=-i \bar{X} T_{\alpha} \gamma^{\mu} \chi$
$\rightarrow 2$ Feynman diagrams:

giving

$$
\begin{align*}
& \operatorname{T}_{\alpha \beta \gamma}^{\mu \nu \rho}(x, y, z) \tag{1}\\
= & -i T_{\gamma}\left[S(x-y) T_{\beta} \gamma^{\nu} P_{L} S(y-z) T_{\gamma} \gamma^{\rho} P_{L} S(z-x) T_{\alpha} \gamma^{\mu} P_{L}\right] \\
& -i T_{r}\left[S(x-z) T_{\gamma} \gamma \rho P_{L} S(z-\gamma) T_{\beta} \gamma^{\nu} P_{L} S(y-x) T_{\alpha} \gamma^{\mu} P_{L}\right]
\end{align*}
$$

where P_{L} is projection operator an left-handed fermions: $P_{L}=\left(\frac{1+r_{5}}{2}\right)$
and $S(x)$ is the propagator of a massless fermion field:

$$
S(x)=\frac{-i}{(2 \pi)^{4}} \int d^{4} p\left(\frac{-i \not p}{p^{2}-i \varepsilon}\right) e^{i p \cdot x}
$$

Equation (1) then becomes

$$
\begin{align*}
& \prod_{\alpha \beta \gamma}^{m v \rho}\left(x_{1} y, z\right)=\frac{i}{(2 \pi)^{12}} \int d^{4} k_{1} d^{4} k_{2} e^{-i\left(k_{1}+k_{2}\right)} e^{i k_{1} \cdot y} e^{i k_{2} \cdot z} \\
& \times \int d^{4} p\left\{\operatorname{tr}\left[\frac{\not p-\not k_{1}+\alpha \alpha}{\left(p-k_{1}+a\right)^{2}-i \varepsilon} \gamma^{v} \frac{\not p+\not \alpha}{(p+a)^{2}-i \varepsilon} \gamma^{\rho} \frac{\not p+\not k_{2}+\not \alpha_{1}}{\left(p+k_{2}+a\right)^{2}-i \Sigma} \gamma^{\mu} \frac{1+r_{s}}{2}\right]\right. \\
& \times \operatorname{tr}\left[T_{\beta} T_{\gamma} T_{\alpha}\right] \\
& +\operatorname{tr}\left[\frac{\not p-\not k_{2}+\not b}{\left(p-k_{2}+b\right)^{2}-i \varepsilon} \gamma^{\rho} \frac{\not p+\not b}{(p+b)^{2}-i \varepsilon} \gamma^{2} \frac{\not p+k_{1}+b}{\left(p+k_{1}+b\right)^{2}-i \varepsilon} \gamma^{\wedge} \frac{1+r_{5}}{2}\right] \\
& \left.\times \operatorname{tr}\left[T_{\gamma} T_{\beta} T_{\alpha}\right]\right\} \text {, } \tag{2}
\end{align*}
$$

where "tr" here denotes a trace over Dirac or group indices
a and b are arbitrary constants
Using the identity

$$
\begin{aligned}
k_{1}+k_{2} & =\left(\not p+k_{2}+\not \subset\right)-\left(\not p-k_{1}+\not Q\right) \\
& =\left(\not p+k_{1}+\not \emptyset\right)-\left(\not p-k_{2}+\not \varnothing\right)
\end{aligned}
$$

and taking the divergence of (t), we find

$$
\begin{aligned}
& \frac{\partial}{\partial x^{\mu}} \operatorname{T}_{\alpha \beta \gamma}^{m \nu \rho}(x, y, z)=\frac{1}{(2-)^{12}} \int d^{4} k_{1} d^{4} k_{2} e^{-i\left(k_{1}+k_{2}\right) \cdot x} e^{i k_{1} \cdot y} e^{i k_{2}-z} \\
& \times \int d^{4} p\left\{\operatorname{tr}\left[T_{\beta} T_{\gamma} T_{\alpha}\right] \operatorname{tr}\left[\frac{\not p-k_{1}+\alpha A}{\left(p-k_{1}+a\right)^{2}-i \Sigma} \gamma^{v} \frac{p+\not a}{(p+a)^{2}-i \Sigma} \gamma^{\rho} \frac{1+\gamma_{T}}{2}\right]\right. \\
& -\operatorname{tr}\left[T_{\beta} T_{\gamma} T_{\alpha}\right] \operatorname{tr}\left[\frac{p+\alpha}{(p+a)^{2}-i \Sigma} \gamma^{\rho} \frac{p+k_{2}+\alpha}{\left(p+k_{2}+a\right)^{2}-i \Sigma} \gamma^{\nu} \frac{1+\gamma_{5}}{2}\right] \\
& +\operatorname{tr}\left[T_{r} T_{s} T_{\alpha}\right] \operatorname{tr}\left[\frac{\not p-\not \ell_{2}+b}{\left(p-k_{2}+b\right)^{2}-i \Sigma} \gamma^{\rho} \frac{\not p+b b}{(p+b)^{2}-i \Sigma} \gamma^{2} \frac{1+\gamma_{\sigma}}{2}\right] \\
& \left.-\operatorname{tr}\left[T_{\gamma} T_{\beta} T_{\alpha}\right] \operatorname{tr}\left[\frac{\not p+\not b}{(p+b)^{2}-i \Sigma} \gamma^{2} \frac{p+\not \beta_{1}+\not b}{\left(p+k_{1}+b\right)^{2}-i \varepsilon} \gamma^{\rho} \frac{1+r_{5}-}{2}\right]\right\}
\end{aligned}
$$

Writing

$$
\operatorname{tr}\left[T_{\beta} T_{\gamma} T_{\alpha}\right]=\underbrace{D_{\alpha \beta \gamma}}_{\text {sym }}+\frac{1}{2} i N \underbrace{C_{\alpha \beta \gamma}}_{\text {anti-sym }}
$$

and $\quad \operatorname{tr}\left[T_{\gamma} T_{\beta} T_{\alpha}\right]=D_{\alpha \beta \gamma-\frac{i}{2} N} C_{\alpha \beta \gamma}$,
where

$$
D_{\alpha \beta \gamma}=\frac{1}{2} \operatorname{tr}\left[\left\{T_{\alpha}, T_{\beta}\right\} T_{\gamma}\right]
$$

and $\operatorname{tr}\left[T_{\alpha} T_{\beta}\right]=N \delta_{\alpha \beta}$.
The anti-sym. terms correspond to time derivatives leading to equal-time commutation relations:

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial x^{m}} \prod_{\alpha s \gamma}^{\mu v \rho}(x, y, z)\right]_{\text {formal }} } \\
= & -i C_{\alpha \beta \delta} \delta^{4}(x-y)\left\langle\gamma_{\delta}^{v}(y) \gamma_{\gamma}^{\rho}(z)\right\rangle_{V A C} \\
& \left.-i C_{\alpha \gamma \delta} \delta^{4}(x-z)<\gamma_{\beta}^{\nu}(y) \gamma_{\delta}^{\rho}(z)\right\rangle_{V A C}
\end{aligned}
$$

The anomaly is contained in the sym. part: grouping 1 st and 4 th traces, we get

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial x^{\mu}} \Gamma_{\alpha \beta \gamma}^{\mu v \rho}(x, y, z)\right]_{\text {anam }}} \\
& =\frac{1}{(2 \pi)^{12}} D_{\alpha \beta \gamma} \int d^{4} k_{1} d^{4} k_{2} e^{-i\left(k_{1}+k_{2}\right) \cdot x} e^{i k_{1} \cdot y} e^{i k_{2} \cdot z} \\
& \times\left\{\operatorname{tr}\left[\gamma^{k} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho} \frac{1+\gamma_{5}}{2}\right] I_{k_{\lambda} \lambda}\left(a-b-k_{1}, b, b+k_{1}\right)\right. \\
& \left.+\operatorname{tr}\left[\gamma^{k} \gamma^{\rho} \gamma^{\lambda} \gamma^{v} \frac{1+\gamma_{5}}{2}\right] I_{-k \lambda}\left(b-a-k_{2}, a, a+k_{2}\right)\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{k \lambda}(k, c, d) \equiv \int d^{4} p\left[f_{k \lambda}(p+k, c, d)-f_{k \lambda}(p, c, d)\right],(5) \\
& f_{k \lambda}(p, c, d) \equiv \frac{(p+c)_{12}(p+d)_{\lambda}}{\left[(p+c)^{2}-i \varepsilon\right]\left[(p+d)^{2}-i \varepsilon\right]} .
\end{aligned}
$$

To evaluate these integrals, expand f in powers of k :

$$
f_{k \lambda}(p+k, c, d)=\sum_{n=0}^{\infty} \frac{1}{n!} k^{\mu_{1}} \ldots k^{\mu_{n}} \frac{\partial^{n} f_{k \lambda}(p, c, d)}{\partial p^{\mu_{1}} \ldots \partial p^{\mu_{n}}}
$$

\longrightarrow zeroth-arder term cancels in (5)
After Wick-rotation all integrals can be written as surface integrals over large 3-sphere with radius P^{\prime},

$$
\begin{aligned}
& \quad \int d^{4} p \underbrace{\partial_{\mu} F^{\mu}}_{\begin{array}{l}
n \text { th-derivative } \\
\text { of } f_{k \lambda}
\end{array}}=\int_{S^{3}} \vec{n} \cdot \underbrace{\underbrace{\left[\frac{\partial}{\partial p}\right]^{n-1}}_{\sim P^{-2}-(n-1)}}_{k^{\mu} \vec{F}} f\left[k^{2}\right]^{n-1} \\
& \propto P^{3} \cdot P^{-2-(n-1)}
\end{aligned}
$$

\longrightarrow only terms that contribute for $P \rightarrow \infty$ are those with $n=1$ and $n=2$:

$$
I_{k \lambda}(k, c, d)=k^{\mu} \int d^{4} p \frac{\partial f_{k \lambda}(p, c, d)}{\partial p^{\mu}}+\frac{1}{2} k^{\mu} k^{\nu} \int d^{4} p \frac{\partial^{2} f_{k \lambda}(p, c, d)}{\partial p^{\mu} \partial p^{2}}
$$

A straightforward calculation then gives:

$$
\begin{aligned}
I_{k \lambda}(k, c, d)=\frac{1}{6} i \pi^{2} & {\left[2 k_{\lambda} c_{k}+2 k_{k} d_{\lambda}-k_{\lambda} d_{k}-k_{\lambda} c_{\lambda}\right.} \\
& \left.-\eta_{k \lambda} k \cdot(k+c+d)\right]
\end{aligned}
$$

The terms arising from 1 in $\frac{1}{2}\left(1+r_{5}\right)$ appear in the combination:

$$
\begin{aligned}
& \left(I_{k \lambda}\left(a-b-k_{1}, b, b+k_{1}\right)+I_{\lambda k}\left(a-b-k_{1}, b, b+k_{1}\right)\right.
\end{aligned}
$$

Left with the term involving r_{5} :

$$
\begin{aligned}
& \operatorname{tr}\left[\gamma^{k} \gamma^{v} \gamma^{\lambda} \gamma^{\rho} \gamma_{5}\right]=-4 i \varepsilon^{k 2 \lambda \rho} \\
& \rightarrow {\left[\frac{\partial}{\partial x^{\mu}} \prod_{\alpha \rho \gamma}^{\mu r \rho}(x, y, z)\right]_{\text {anom }} } \\
&= \frac{2}{(2 \pi)^{12}} D_{\alpha \rho \gamma} \int_{\alpha} d^{4} k_{1} d^{4} k_{2} e^{-i\left(k_{1}+k_{2}\right) \cdot x} \\
& \quad \times e^{i k_{1} \cdot y} e^{i k_{L} \cdot z} \pi^{2} \varepsilon^{k \nu \lambda \rho} a_{k}\left(k_{1}+k_{2}\right)_{\lambda} .
\end{aligned}
$$

Taking $a=k_{1}-k_{2}$ eliminates the anomaly in $\left(\frac{\partial}{\partial y^{v}}\right) \Gamma_{\alpha \beta \gamma}^{\mu \nu \rho}(x, y, z)$ and $\left(\frac{\partial}{\partial z^{\rho}}\right) \Gamma_{\alpha s \gamma}^{\mu \nu \rho}(x, y, z)$
\rightarrow are left with

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial x^{m}} \Gamma_{\alpha \beta \gamma}^{\mu v \rho}(x, y, z)\right]_{\text {anam }} } \\
= & \frac{1}{(2 \pi)^{12}} D_{\alpha \beta \gamma} \int d^{4} k_{1} d^{4} k_{2} e^{-i\left(k_{1}+k_{2}\right) \cdot x} e^{i k_{1} \cdot y} e^{i k_{2} \cdot z} \\
& \times 4 \pi^{2} \varepsilon^{12 \nu \lambda} \rho_{k_{1 k}} k_{2 \lambda} \\
= & -\frac{1}{4 \pi^{2}} D_{\alpha \rho \gamma} \Sigma^{k \nu \lambda \rho} \frac{\partial \delta^{4}(y-x)}{\partial y^{12}} \frac{\partial \delta^{4}(z-x)}{\partial z^{\lambda}}
\end{aligned}
$$

next time have mare to say on this...

